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A simulation formalism for the nonlinear response of vibrational excitons is presented and applied
to the OH stretching vibrations of neat liquid H2O. The method employs numerical integration of
the Schrödinger equation and allows explicit treatment of fluctuating transition frequencies,
vibrational couplings, dipole moments, and the anharmonicities of all these quantities, as well as
nonadiabatic effects. The split operator technique greatly increases computational feasibility and
performance. The electrostatic map for the OH stretching vibrations in liquid water employed in our
previous study �A. Paarmann et al., J. Chem. Phys. 128, 191103 �2008�� is presented. The
two-dimensional spectra are in close agreement with experiment. The fast 100 fs dynamics are
primarily attributed to intramolecular mixing between states in the two-dimensional OH stretching
potential. Small intermolecular couplings are sufficient to reproduce the experimental energy
transfer time scales. Interference effects between Liouville pathways in excitonic systems and their
impact on the analysis of the nonlinear response are discussed. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3139003�

I. INTRODUCTION

Coherent multidimensional spectroscopies1–3 have most
recently become a valuable tool for the study of dynamics in
complex systems. As the optical equivalent of two-
dimensional �2D� nuclear magnetic resonance,4 both elec-
tronic and vibrational 2D coherent spectroscopies allow in-
vestigations of structural dynamics, coupling, dephasing, and
relaxation mechanisms. So far, only a few 2D electronic
spectroscopy studies have been reported.5–8 Vibrational 2D
spectroscopy, on the other hand, usually referred to as 2D
infrared �2DIR� spectroscopy, has been successfully used to
study a wide range of systems, such as peptides,9–17

proteins,18–21 DNA,22–24 and neat liquids.25–28

In general, the analysis of 2D spectra is complicated by
the large linewidth of the transitions. The resulting overlap
and interference between different peaks in the spectra often
greatly distort the peak shapes, preventing simple extraction
of the dynamic parameters of interest. The 2D spectra be-
come even more convoluted in systems with pronounced in-
termode couplings which lead to delocalized excitations or
formation of excitons. Some experimental approaches have
been developed to amplify features of interest and reduce
complexity of the spectra.29,30 Still, high level theoretical
modeling is required in order to reliably extract physical and
chemical information from these data.

Initially, most 2D modeling approaches relied on the as-
sumption of Gaussian statistics for transition frequency fluc-
tuations of spatially localized vibrational or electronic
modes. Then, the cumulant expansion can be truncated at
second order31 and all nonlinear spectroscopic observables

are characterized by the frequency correlation function
�FCF� C�t�= ����t����0��. The FCF is usually obtained from
molecular dynamics �MD� with various strategies for map-
ping the MD observables, e.g., electric fields, onto the tran-
sition frequencies.16,32–34 This method was extended to in-
clude bath modulation of the transition dipole moments
�non-Condon effects�.35 In some special cases, approximate
descriptions can be found to describe non-Gaussian statistics
of the transition frequency fluctuations.17

Several methods have been developed to treat intermode
coupling leading to energy transfer,16 chemical exchange,36

and formation of excitons.24,37,38 As long as the charge den-
sities of the coupled states do not overlap, the delocalized
states can be described as Frenkel excitons.39 When the site
frequency fluctuations are small compared to the intermode
couplings, one can describe the system in a fixed exciton
basis, with perturbative description of the energy transfer
between exciton states.34,39 If the fluctuations and couplings
are comparable, exciton transport is a nonadiabatic process
and multiple state crossing prevents the use of that basis.15

Numerical integration of the Schrödinger equation16,28,36

�NISE� is well suited to describe such complex dynamics.
The major drawback of the method has so far been the high
computational cost since it required diagonalizing the two-
particle Hamiltonian. For that reason, the method was lim-
ited to either linear response calculations or small systems.
In Sec. II, we show that by introducing the split operator
technique28,40 the computational cost of NISE can be dra-
matically reduced enabling this method to be applied to a
wide range of molecular systems.

The first application of this approach was made to model
the 2DIR spectrum of the OH stretching vibration in neata�Electronic mail: dmiller@lphys.chem.utoronto.ca.
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liquid H2O.28 Our recent experimental studies26 demon-
strated that the OH stretching vibration shows extremely fast
dynamics with no clear separation of time scales between the
dephasing, energy transfer, and relaxation dynamics. Even
more interesting, it was observed that the OH vibrational
modes have a pronounced excitonic character at tempera-
tures near freezing. In Sec. III, we report on the simulations
of the 2DIR response of liquid water. We present an ab initio
electrostatic map of the OH stretching vibrations in water, as
well as nonlinear response calculations that are in good
agreement with experiment.

In the last section �Sec. IV� we discuss interference ef-
fects between the different Liouville pathways as they appear
in simulations of the nonlinear response of excitons. These
prevent simple interpretation and analysis of the individual
pathways.

II. NONLINEAR RESPONSE OF VIBRATIONAL
EXCITONS

In the following we present our NISE model which em-
ploys the split operator technique to calculate the third order
optical response of vibrational excitons. This method can
also be adapted straight forwardly to model electronic exci-
tations.

A. The fluctuating Hamiltonian and dipole operator

We consider a system of M coupled vibrational oscilla-
tors described by the Hamiltonian

Ĥ��� = ĤS��� + ĤI��� , �1�

where ĤS describes the vibrational system and ĤI contains
the interaction with the optical fields. The vibrational system

is described by the effective Hamiltonian �we set �=1
throughout this paper�:

ĤS��� = �
m

�m���B̂m
† B̂m + �

m��m

Jm,m����B̂m
† B̂m�

+ �
mn,m�n�

Vmn,m�n����B̂m
† B̂n

†B̂m�B̂n�. �2�

All bath interactions are incorporated into the Hamil-
tonian parameters. The first two terms describe the free har-
monic system, where �m��� is the fundamental transition fre-

quency of mode m, B̂m
† �B̂m� is the Boson creation

�annihilation� operator for mode m, �B̂m
† , B̂n�=�m,n. The sec-

ond term contains the intermode coupling Jm,m�. The last
term describes quartic anharmonicities V. Most commonly,
only diagonal anharmonicities of local overtones Vmm,mm are
considered. These give the anharmonicity shift between the
0→1 and 1→2 transitions. However, the above Hamiltonian
allows for a description of combination band frequency
shifts Vmn,mn and coupling anharmonicities �off-diagonal el-
ements of V� as well.

The dipole operator is given by

�̂��� = �
m

�m����B̂m
† + B̂m� + �

mnm�

��mnm�����B̂n
†B̂m�

† B̂m

+ B̂m
† B̂m�B̂n� . �3�

Here, �m is the fundamental 0→1 transition dipole moment
of mode m, and �� represents the dipole moment anharmo-
nicities. In the Condon approximation, the time averaged
amplitudes ������ are used, neglecting fluctuations and anhar-
monicities of the transition dipole moments. Non-Condon
effects can be included35 by explicitly treating the bath influ-
ence and time dependence of �m. The second term in Eq. �3�
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FIG. 1. �Color� Double sided Feynman diagrams for
the kI�S1−S3� and kII�S4−S6� phase matching condi-
tions, see text. The red arrows indicate the closed time
path loops used to calculate the contributions from
these diagrams.
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allows for treatment of anharmonicities of the local 1→2
transition dipole moments ��mmm, as well as anharmonici-
ties of dipole moments involving intermode combination
bands �other elements of ���.

B. The third order vibrational response

The third order contribution to the system’s polarization
induced by the laser fields can be written as31,38

P�3��r,�3� =	 	 	 d�2d�1d�0S��3,�2,�1,�0�

� E�r,�2�E�r,�1�E�r,�0� , �4�

where S��3 ,�2 ,�1 ,�0� is the third order response function.

S��3,�2,�1,�0� = i3��̂��3���̂��2�,��̂��1�,�̂��0���� . �5�

Sorting out the possible time orderings and invoking the
rotating wave approximation, S can be written in terms of
Liouville pathways for the different signal directions. We
shall focus on kI=−k1+k2+k3 and kII=k1−k2+k3, also re-
ferred to as rephasing and nonrephasing pathways, respec-
tively, represented by the double sided Feynman diagrams
given in Fig. 1. The respective Green’s function expressions
for the kI pathways �S1 ,S2 ,S3� and the kII pathways
�S4 ,S5 ,S6� are given in Eq. �6�. These diagrams are often
referred to as ground state bleach �GSB� �S1 and S4�, excited
state emission �ESE� �S2 and S5�, and excited state absorption
�ESA� �S3 and S6�.

S1 = − ��̂−��0�Ĝ1
†��1,�0��̂+��1�Ĝ0

†��3,�1��̂−��3�Ĝ1��3,�2��̂+��2�� ,

S2 = − ��̂−��0�Ĝ1
†��2,�0��̂+��2�Ĝ0

†��3,�2��̂−��3�Ĝ1��3,�1��̂+��1�� ,

S3 = − ��̂−��0�Ĝ1
†��3,�0��̂−��3�Ĝ2��3,�2��̂+��2�Ĝ1��2,�1��̂+��1�� ,

�6�
S4 = − ��̂−��3�Ĝ1��3,�2��̂+��2�Ĝ0��2,�1��̂−��1�Ĝ1��1,�0��̂+��0�� ,

S5 = − ��̂−��1�Ĝ1
†��2,�1��̂+��2�Ĝ0

†��3,�2��̂−��3�Ĝ1��3,�0��̂+��0�� ,

S6 = − ��̂−��1�Ĝ1
†��3,�1��̂−��3�Ĝ2��3,�2��̂+��2�Ĝ1��2,�0��̂+��0�� .

The Green’s functions Ĝ0 , Ĝ1 , Ĝ2��b ,�a� propagate the
ground, the singly excited, and the doubly excited state, re-
spectively, from �a to �b. The dipole excitation and de-
excitation operators �̂+ and �̂− are derived from Eq. �3� and
are given by

�̂+��� = �
m

�m���B̂m
† + �

mnm�

��mnm����B̂n
†B̂m�

† B̂m,

�7�
�̂−��� = �

m

�m���B̂m + �
mnm�

��mnm����B̂m
† B̂m�B̂n.

The third order response functions for the two tech-
niques are given by the sum of the respective diagrams:

SI = S1 + S2 + S3,

�8�
SII = S4 + S5 + S6.

Harmonic systems �V
0 in Eq. �2� and ��
0 in Eq.
�3�� are linear; these contributions then cancel exactly and
the signals vanish. The finite nonlinear response is induced
by the anharmonicities V and ��.

The response functions in Eq. �6� are evaluated by a
series of dipole operations and propagations of the many
body system as indicated by the closed time path loops in

Fig. 1. The challenging tasks in these operations are the
propagations, in particular, for doubly excited states in dia-
grams S3 and S6.

C. Direct numerical propagation of vibrational
excitons

All propagators are calculated using NISE:15,28,41

Ĝ��b,�a� = − i���b − �a� �
p=�a

�b−��

exp�− iĤ�p���� . �9�

We calculate infinitesimal propagators Û�p�=exp

�−iĤ�p����, and propagate step wise. Setting the ground
state energy to zero, the ground state propagator is simply

unity. We can now express Û in the local basis for the singly
�U�1�� and doubly �U�2�� excited states as given in Eq. �10�,

Um,n
�1� �p� = �m�Û�p��n� ,

�10�
Umn,m�n�

�2� �p� = �m,n�Û�p��m�,n�� ,

where �m�= B̂m
† �0� and �m ,n�= �1 /�1+�mn�B̂m

† B̂n
†�0�. For not

too large systems, U�1� can be calculated exactly by diago-
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nalizing the single particle Hamiltonian �m�ĤS�n�, where the
third term in Eq. �2� does not contribute.

However, propagation of doubly excited states �m ,n� is
more challenging due to the large size of the symmetrized
two-particle basis being M�M +1� /2. For M 	40, direct di-
agonalization and data storage is computationally too expen-
sive. Instead, we use the split operator method28,40 for calcu-
lating these matrix exponentials. We split the Hamiltonian

into the harmonic part Ĥ0 �first two terms in Eq. �2�� and

anharmonic part Ĥa �third term� and calculate the matrix ex-
ponential as given in Eq. �11�.

Umn,m�n�
�2� = �

m�,n�

U0,mn,m�n�
�2� Ua,m�n�,m�n�

�2�

= �
m�,n�

�m,n�exp�− iĤ0����m�,n��

� �m�,n��exp�− iĤa����m�,n�� . �11�

The harmonic exponential U0
�2� can be calculated exactly

from the single particle propagators, see Appendix A. The
anharmonic part is usually small enough to allow first order
Taylor expansion. The split operator technique gives good
accuracy provided the time steps �� are small enough.

We note that in Eq. �11� one can avoid computationally
expensive matrix multiplications. Consecutive propagation
of the doubly excited states with the two infinitesimal propa-
gators U0

�2� and Ua
�2� is significantly faster.

D. Nonlinear signal calculation

If the optical pulses are short compared to the system
dynamics, the nonlinear polarization can be described in the
impulsive limit. Then, the third order signal along the kI

direction is given by Eq. �12�.

SkI�t1,t2,t3� = �
k=1

3

Sk�t1,t2,t3� + �
k=4

6

Sk�− t1,t2,t3� . �12�

The 2DIR correlation spectra are obtained by double
Fourier transformation with respect to t1 and t3, with ti=�i

−�i−1:

S2D��1,t2,�3� = I	 	 dt1dt3ei�1t1ei�3t3SkI�t1,t2,t3�� .

�13�

Similarly, the pump probe �PP� signal in the impulsive
limit is given by Eq. �14� with t1=0. Then, the rephasing and
nonrephasing contributions are identical. The spectrally re-
solved PP response is given by Eq. �15�.

SPP�t2,t3� = 2�
k=1

3

Sk�0,t2,t3� , �14�

SPP�t2,�3� = I	
0




dt3ei�3t3SPP�t2,t3�� . �15�

In the impulsive limit, the PP signal is also known as hetero-
dyne transient grating.

The polarization anisotropy �PA� SPA�t2� is calculated
from the PP signal with parallel ��� and crossed ��� polar-
ization of the pump and probe pulses. This is done using the
respective projections of the transition dipole moment vec-
tors in Eq. �3� in the laboratory frame when calculating the
nonlinear response functions. Orientational averaging is done
numerically.

SPA�t2� =
S�

PP�t2� − S�
PP�t2�

S�
PP�t2� + 2S�

pp�t2�
. �16�

Equation �16� can be evaluated for either spectrally resolved
or spectrally integrated PP, using the respective PP signals as
input.

Similarly, the magic angle �MA� pump probe signal can
be obtained spectrally resolved or spectrally integrated.

SMA�t2� � S�
PP�t2� + 2S�

PP�t2� . �17�

If the optical pulses are not short compared to the dy-
namics of the system, the finite length of pulses must be
considered. Then, the nonlinear polarization has to be evalu-
ated using Eqs. �4� and �8� by convolving the nonlinear re-
sponse function with the optical pulse temporal shape. The
impulsive limit has a great advantage, since it only requires
propagation along two time variables �t1 and t3 for selected
values of t2 for the 2D spectra; t2 and t3 for PP�, thus signifi-
cantly reducing the computational cost compared to finite
pulse length calculations. Approximate expressions for well
separated pulses with finite bandwidth were derived
recently.42,43

E. Computational benchmarks

We now present a numerical approach for calculations of
the third order vibrational response. The most expensive part
of the calculations is the propagation of doubly excited
states. Diagonalizing the two-particle Hamiltonian scales
�M6 and will only be feasible for M �40. With our split
operator method, the propagation still scales �M4, whereas
all other operations scale either �M2 �singly excited state
propagation, doubly excited dipole interactions� or �M3

�matrix multiplications in the singly excited basis�. On the
other hand, the signal calculation of a single trajectory al-
ready contains an ensemble average ��M�, which results in
a total scaling of our method as �M3.

In our simulations of H2O presented in Sec. III with M
=128, the doubly excited state propagation consumes �99%
of the calculation time. We found a good signal-to-noise ratio
when averaging �100 trajectories per dipole orientation for
pump and probe pulses. With 100 time steps in each time
direction, a single trajectory calculation takes �2 h on an
AMD Athlon© class processor, resulting in �1800 h single
processor computation time to gain a 2D spectrum in the
impulsive limit.

III. APPLICATION TO OH STRETCHING VIBRATIONS
IN LIQUID WATER

The modeling approach described in Sec. II is well
suited to simulate the nonlinear vibrational response of liquid
water. This is due its capabilities, at least in principle, to

204110-4 Paarmann et al. J. Chem. Phys. 130, 204110 �2009�



reproduce the key features of the nonlinear response ob-
served in the experiment:26 frequency dependent spectral dif-
fusion dynamics, frequency dependent anharmonicities,
likely nonadiabatic and partially coherent energy transfer dy-
namics, i.e., exchange between fluctuating disordered vibra-
tional excitons. In the following we show how we obtain the
vibrational Hamiltonian for liquid water and that, indeed, our
model does reproduce these key features convincingly.

A. The effective vibrational Hamiltonian

The vibrational Hamiltonian was constructed according
to Sec. II A. We assumed two fundamental modes per mo-

lecular site �symmetric and antisymmetric stretch�, as shown

in Eq. �18�. Here, B̂m,
† and �m, denote the creation operator

and the fundamental transition frequency, respectively, for
mode  �=2,3, symmetric, antisymmetric� at the molecular
site m. The intermolecular couplings Jm,m�� are calculated
using dipole-dipole coupling as given in Eq. �19�, where
�m,1 are the fundamental transition dipole moments at mo-
lecular site m, Rmm� is the distance between sites m and m�,

and R̃mm�= �Xm−Xm�� /Rmm�. Since the electrostatic map pro-
vides instantaneous local eigenstates, we set all intramolecu-
lar couplings to 0.

Ĥ��� = �
m=1

64

�
=2

3

�m,���B̂m,
† B̂m, + �

m�,m=1

64

�
,�=2

3

Jm,m�����B̂m,
† B̂m�,� + �

mn,m�n�=1

64

�
�,���=2

3

Vmn�,m��n������B̂m,
† B̂n,�

† B̂m�,�B̂n�,��,

�18�

Jm,m����� =
1 − �mm�

4��
·

3�m,1��� · R̃mm�����m�,1���� · R̃mm���� − �m,1��� · �m�,1����

Rmm�
3 ���

. �19�

The intramolecular anharmonicities V with m=m�=n
=n� are calculated as the difference between the overtone
frequencies provided by the electrostatic map and the respec-
tive harmonic values. For example, the anharmonicity shift
of the antisymmetric overtone on molecule m=1 is
V1313,1313=�1,5−2�1,3. The distributions of the intramolecu-
lar anharmonicities are shown in Fig. 2. We also treat inter-
molecular anharmonicities, or coupling anharmonicities, that
arise from anharmonic transition dipole moments �see below,
Eq. �20��, affecting the dipole-dipole coupling between local
overtones and intermolecular combination bands. Still, the
anharmonicity matrix V is rather sparse, greatly reducing the
computational effort.

In a similar way, the transition dipole operator is con-
structed using Eq. �3� modified to account for the two

fundamental modes per molecule, as shown in Eq. �20�.

�̂��� = �
m=1

64

�
=2

3

�m,1����B̂m,
† + B̂m,�

+ �
m=1

64

�
��=2

3

��m,������B̂m,�
† B̂m,�

† B̂m,

+ B̂m,
† B̂m,�B̂m,�� . �20�

Here, �m,1 are the fundamental transition dipole mo-
ments for mode m �transition from ground state into
symmetric/antisymmetric fundamental mode =2,3� at mo-
lecular site m. The distributions of amplitudes for fundamen-
tal transition dipole moments are shown in Fig. 3 as a func-
tion of the respective fundamental transition frequencies.

FIG. 2. Diagonal frequency anharmonicities. �a� Symmetric overtone �4, �b�
antisymmetric overtone �5, and �c� intramolecular combination band �6,
plotted as histograms vs their respective fundamental frequencies.

FIG. 3. Histograms of the fundamental transition dipole moment amplitudes
as function of the respective transition frequencies. �a� Symmetric mode 
=2. �b� Antisymmetric mode =3.
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In Eq. �20�, we neglected intermolecular anharmonicities
of the transition dipole moments. The intramolecular anhar-
monicities are calculated as the differences between the tran-
sition dipole moments involving overtones ��m,� ,
=2,3 ,�=4,5 ,6� and their harmonic counterparts. This is
particularly important for harmonically forbidden transitions
�m,25 and �m,34, which are now enabled due to the anharmo-
nicities.

B. Ab initio electrostatic map

The electrostatic potential in the vicinity of a single H2O
molecule generated by the surrounding molecules is ex-
panded to second order in Cartesian coordinates �Fig. 4�

U�X� = U0 − �
�

E�X� −
1

2�
�,�

E��X�X�. �21�

Apart from the overall shift U0, Eq. �21� has nine indepen-
dent multipole coefficient parameters �note that E��=E���.
They were arranged in a vector

C = �Ex,Ey,Ez,Exx,Eyy,Ezz,Exy,Exz,Eyz� . �22�

C was calculated analytically at the origin of the molecular
frame coordinate system from the surrounding water partial
charges of MD configurations.

The anharmonic gas phase vibrational potential surface
of H2O in presence of the multipole field C is expanded in
the three normal coordinates Qi to sixth order

V�Q;C� = �
k=1

6

f i1¯ik
�k� �C��

i=1

k

− Qi, �23�

where f i1¯ik

�k� �C� are the anharmonic force constants, which
are calculated by the quantum chemical calculations at the
MP2 /6-31+G�d , p� level using our modified GAUSSIAN 03

code.32 The Hamiltonian was expanded in a harmonic basis
set and was recast into a normal ordered form.44 The vibra-
tional eigenstates are calculated by diagonalizing a Hamil-
tonian using the implicit restarted Arnoldi method.44–46 High
energy basis states where the total number of excitations
nT
n1+n2+n3 are larger than 14 are neglected.

Molecular vibrational frequencies of the six eigenstates
�ground state, symmetric O–H stretch, antisymmetric O–H

stretch, and their overtones and combinations� and the tran-
sition dipole moments between these states were param-
etrized with the multipole coefficients C.

The calculated gas phase frequencies of these six eigen-
states are tabulated and compared to the reference high level
calculation47 in Table I. The calculated frequencies are 0.6%
to 1.2% higher than the reference calculations which em-
ployed higher computational level with larger basis sets. The
anharmonicities of symmetric and antisymmetric O–H
stretches have good agreement with the reference calcula-
tions �103 versus 113 cm−1 and 71 versus 113 cm−1�.

The vibrational transition frequency from the ground
state to state  and the transition dipole moments between
states  and � were parametrized using the multipole coef-
ficient vector C.

� = �gas
 + �

�

��
E� +

1

2�
��

��,�
g E�E�,

�24�

�� = Mgas
� + �

�

M�
�E� +

1

2�
��

M�,�
�E�E�.

Here � and � denote the nine independent Cartesian coeffi-
cients � ,�=x ,y ,z ,xx ,yy ,zz ,xy ,xz ,yz of the multipole vec-
tor in the molecular frame coordinate system.

The expansion coefficients are calculated by using the
central difference formulas.44 The calculated map is given in
Table II. Due to the molecular symmetry, the first derivatives
with respect to the components Ex, Ey, Exy, Exz are 0. The
electric field in parallel to the molecular axis �Ez� blueshifts
both symmetric and antisymmetric O–H stretch frequencies
since the negative charged oxygen moves toward the center
of the hydrogens resulting in shorter O–H distances. The
calculated map of the transition dipole moments is given in
Table III.

In order to construct the vibrational Hamiltonian, we
performed a MD simulation of a small �M =64 molecules�
simple point charge extended water system at room tempera-
ture and constant volume using the GROMACS-3.3.1

program.48 The electric fields generated by the solvent envi-
ronment were calculated analytically32 at every molecular
site and time step. The electrostatic map was applied to cal-
culate the transition frequencies and dipole moments for
each molecule and time step.

Comparing the resulting distributions of the fundamental
transition frequencies �2 and �3 to the experimental absorp-
tion spectrum, we found the solvent shifts generated by the
electrostatic map insufficient. We compensated for this effect

z

y
xH H

O

FIG. 4. �Color� Coordinate system fixed on H2O.

TABLE I. Calculated anharmonic frequencies in the gas phase �is in cm−1�.

State Frequency Reference calc.a Description

1 0.0 0.0 Ground state
2 3688.2 3657.0 s-��O–H�
3 3803.2 3779.5 a-��O–H�
4 7273.9 7201.6 s-��O–H�v=2

5 7535.1 7445.1 a-��O–H�v=2

6 7339.0 s-��O–H�+a-��O–H�
aReference 47.
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by scaling all electric fields with a factor of 2.2 to match the
maximum of the fundamental frequency distribution to the
maximum of the linear spectrum of H2O, as shown in Fig.
5�a�. In Fig. 5�b� we show the resulting overtone frequency
distributions.

C. Nonlinear infrared response

Our recent study of liquid water28 focused on the effect
of intermolecular coupling on the dynamics and the 2DIR
correlation spectra of the OH stretching vibrations. We used

TABLE II. Electrostatic ab initio map of the frequencies of the six states. The state �n ,m� represent the n and
m quanta on symmetric O–H stretch and antisymmetric O–H stretch modes. Unit is in cm−1 for �gas and
cm−1 a.u.−1 for ��

�1�.

�1,0� �0,1� �2,0� �0,2� �1,1�

�gas 3 688.2 3 803.3 7 274.0 7 535.1 7 339.1

�x
�1� 0.0 0.0 0.0 0.0 0.0

�y
�1� 13.6 �10.0 113.2 �17.7 �70.3

�z
�1� 718.4 2 468.7 1 621.9 4 410.5 2 983.1

�xx
�1� 3 357.7 3 209.3 6 661.2 6 512.3 6 530.4

�yy
�1� �2 327.6 �346.0 �4 618.7 �893.1 �3 197.5

�zz
�1� �898.8 �3 025.0 �2 110.4 �5 706.7 �3 746.5

�xy
�1� 0.0 0.0 0.0 0.0 0.0

�xz
�1� 0.0 0.0 0.0 0.0 0.0

�yz
�1� �36.8 40.3 �241.0 116.2 123.1

�x,x
�2� �8 713 �10 288 �15 388 �16 391 �16 668

�x,y
�2� 35 �1 025 �1 495 �952 �5 528

�x,z
�2� 85 �707 1 124 �3 033 �122

�x,xx
�2� �1 458 �1 139 �4 708 �1 936 �4 474

�x,yy
�2� �391 �329 �1 534 �2 080 �1 508

�y,y
�2� �146 732 �18 760 �433 759 �122 156 57 031

�y,z
�2� �19 598 18 453 �66 921 �1 397 64 275

�y,yy
�2� �5 335 3 976 �13 762 1 491 4 906

�y,zz
�2� �4 236 1 661 �16 319 �4 243 4 158

�y,yz
�2� 730 072 �238 293 2 166 068 206 542 �874 097

�z,z
�2� �51 748 �54 710 �113 723 �107 120 �109 830

�z,yy
�2� 36 402 28 076 68 327 63 670 70 467

�z,zz
�2� 35 784 44 947 81 728 84 202 80 643

�z,yz
�2� �43 643 41 195 1 784 127 �6 716 62 014

�xx,xx
�2� �6 302 �5 669 �12 190 �15 493 �11 616

�yy,yy
�2� �46 859 �54 927 �96 941 �110 177 �101 532

�yy,zz
�2� 17 928 30 437 36 236 59 553 41 087

�yy,yz
�2� �4 856 7 162 �11 763 11 318 13 978

�zz,zz
�2� �15 942 �20 310 �33 379 �39 360 �33 977

�zz,yz
�2� �14 357 15 009 1 667 989 4 962 26 631

�xy,xy
�2� �30 756 �26 260 �63 808 �52 785 �59 364

�xz,xz
�2� �23 895 �19 764 �46 442 �38 728 �44 292

�yz,yz
�2� �134 452 4 952 919 �4 603 900 273 512 3 100 575

TABLE III. Electrostatic ab initio map of the allowed transition dipole moments of the six states �linear part�. The state �n1 ,n2�→ �m1 ,m2� represents the
transition between the state �n1 ,n2� and �m1 ,m2�. The x components of the transition dipole moments are always zero and y and z components are shown. Unit
is in a.u. for Mgas and M�

�1�.

�0,0�→ �1,0� �0,0�→ �0,1� �1,0�→ �2,0� �1,0�→ �1,1� �0,1�→ �0,2� �0,1�→ �1,1�

Mgas �0.03, 4.11� �10.66, �0.01� �0.21, 5.60� �10.72, �0.10� ��14.30, 0.02� ��0.03, 4.24�
Mx

�1� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0�
My

�1� ��447.6, �0.4� �1.3, �127.1� ��840.6, �0.4� �9.8, �12.7� �0.8, 246.4� ��80.8, 0.2�
Mz

�1� ��1.1, �172.2� ��154.9, 0.8� ��10.8, �224.7� ��155.4, 8.6� �188.6, �0.7� �5.9, �176.1�
Mxx

�1� �0.1, �9.9� ��35.2, �0.1� �0.7, �14.1� ��35.2, �0.4� ��25.9, 0.2� ��0.4, �10.2�
Myy

�1� �0.6, 170.1� �297.9, �0.4� �2.6, 234.2� �298.9, �3.0� ��416.9, 0.9� �1.9, 171.0�
Mzz

�1� �0.7, 64.7� �6.3, �0.5� �8.1, 80.7� �6.7, �5.6� �12.5, 0.2� ��5.2, 67.7�
Mxy

�1� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0�
Mxz

�1� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0� �0.0, 0.0�
Myz

�1� �1000.8, �0.1� ��1.7, �49.7� �1872.9, �1.1� ��5.1, �285.0� �1.8, �216.9� ��121.6, 1.0�
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the dielectric constant � in the resonant dipole-dipole cou-
pling Eq. �19� as a scaling factor to reproduce the PA decay
regime of �80 fs observed experimentally,25,26,49 evident for
the fully resonant coupling regime in liquid H2O. Good
agreement with experiment was found for an average next
neighbor coupling �=12 cm−1.28 We will describe these re-
sults and discuss the effects observed in the context of the
simulation method.

In Fig. 6�a�, we show the spectrally integrated PP signal
for parallel and crossed polarization of pump and probe
pulses for two coupling regimes. Figures 6�b� and 6�c� show
SPA and SMA calculated from these signals, respectively. Also
shown in Fig. 6�b� is the experimentally observed PA in
H2O.26

For the uncoupled system, all dynamics observed in Fig.
6 are caused by modulations of the transition dipole mo-
ments, since all energy transfer pathways are blocked and all
populations remain constant. The PA reflects orientational
modulations of the transition dipole moments which are
caused by two major effects—�i� fluctuations of the transi-
tion dipole moments and �ii� librational motion and rota-
tional diffusion. The former is found to be very strong in
H2O, accounting for �1 /2 of the signal decay. On the other
hand, the SMA signal shows a fast initial decay that is entirely
due to amplitude fluctuations of the transition dipole mo-
ments. This effect has not been addressed before, and we
note that it should be considered when population relaxation
dynamics are extracted from MA data.

When adding the intermolecular coupling, the anisotropy
decay Fig. 6�b� speeds up with increasing coupling strength
and the long-lived components vanish. This effect can be
clearly assigned to intermolecular energy transfer. We expect
that the transfer process is at least partially coherent, and has
to be understood as randomized energy transport between the

disordered excitons. Since the total exciton population re-
mains unchanged, the SMA signal is unaffected by these pro-
cesses, as can be seen in Fig. 6�c�.

In Fig. 7, we show a series the 2DIR correlation spectra
for two coupling regimes, uncoupled and �=12 cm−1, for
different population times t2. All spectra exhibit two peaks.
The positive peak on the diagonal corresponds to the funda-
mental 0→1 transition. The negative peak originating from
1→2 ESA is red shifted due to anharmonicities. Strong in-
terference between these two peaks results in significant sig-
nal cancellation and distortion of the peak shapes in the over-
lap region. Despite these distortions, we observe a clear
V-shape of the ESA peak that, in part, is caused by the dis-
tributions of diagonal anharmonicities as shown in Fig. 2.

In both coupling regimes, the fundamental peak is
stretched along the diagonal at population time t2=0 fs, in-
dicative of initial inhomogeneity in the sample. This inho-
mogeneity is lost as with t2 on very similar time scales for
both systems. However, no single time scale for loss of cor-
relations can be extracted from these spectra. We instead
observe these dynamics to vary across the spectrum. For
both regimes, the red side loses correlations faster than the
blue side. For the uncoupled system, we observe mainly two
spectral components showing different dynamics which we
attribute to the symmetric stretch on the red side and the
antisymmetric OH stretch on the blue side. Extraction of the
respective time scales is, however, difficult due to the spec-
tral overlap of the two modes. For �=12 cm−1, no such
separation is observed. The excitonic energy transfer instead
smoothes out the dynamics across the spectrum. This is most
obvious from the bending of the fundamental peak shape and
the nodal line between the peaks in the t2=100 and 200 fs
spectra.

For direct comparison with experiment, we corrected our

FIG. 5. �Color� �a� Fundamental frequency distribution
of the symmetric �2 �black�, antisymmetric �3 �red�
OH stretching vibration, and combined symmetric and
antisymmetric frequency distribution �green�, blue: ex-
perimental linear spectrum �Ref. 56�. �b� Overtone fre-
quency distributions, symmetric overtone �4 �black�,
antisymmetric overtone �5 �red�, and combination band
�6 �green�.

FIG. 6. �Color� Spectrally integrated
signals. �a� PP transients for parallel
�ppol� and crossed �xpol� polarization
of pump and probe pulses for two cou-
pling regimes. �b� SPA calculated from
�a�, green: experimental PA �Ref. 26�.
�c� SMA calculated from �a�.
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simulation results for �=12 cm−1 to match the experimental
conditions by multiplication of the frequency domain re-
sponse with the experimental excitation pulse spectra along
�1 and �3. Additionally, we included population relaxation
effects using ad hoc description of the population relaxation
with a population lifetime of T1=200 fs.25 We also model
the persisting GSB observed in the experiment.26 The extrac-
tion of the GSB contribution to the total nonlinear response
is, however, difficult for excitonic systems. This is discussed
in Sec. IV. We instead use an approximate description for the
GSB contribution as described in Appendix B. With these
assumptions, we find close agreement between our simula-
tions and experiment as is shown in Fig. 8.

D. Discussion of the nonlinear vibrational response
of H2O

The features and dynamics observed in the nonlinear vi-
brational response of neat H2O can be assigned to two major
contributions—local intramolecular effects and excitonic ef-
fects. The former are caused by the local 2D OH stretching
potential. Fluctuations in the local environment lead to
modulations of the mixing between the states resulting in
strong fluctuations of the fundamental dipole moments as
well as the overtone frequencies and dipole moments. This
can to some extent be interpreted as intramolecular energy

transfer. Also, the strong local anharmonicities lead to break-
down of harmonic selection rules, enabling additional path-
ways contributing to the nonlinear response. Additionally, we
observe faster fluctuations for the symmetric stretch mode on
the red side of the spectrum, see Fig. 7, compared to the
antisymmetric mode on the blue side. Very similar effects
have been observed for water in acetonitrile,50 where this is
attributed to non-Gaussian dynamics caused by local mode
couplings. Similarly, modulations of the Fermi resonance of
the symmetric mode with the OH bending mode overtone is
likely to impact the fast fluctuation time scales observed.
This is included in our model through the quantum chemical
calculations leading to the electrostatic map.

Apart from all those dynamical effects, the distributions
of transition frequencies and dipole moments and their an-
harmonicities also have significant impact on the peak
shapes observed in the 2DIR correlation spectra. The dipole
moment distributions as shown in Fig. 3 lead to amplitude
distortion. The distributions of local frequency anharmonici-
ties �see Fig. 2� create a distinct ESA peak shape and also
lead to significant cancellation in the peak overlap region,
see Fig. 10. The combination of all these effects makes it
quite clear why a simple analysis of the spectra,51,52 e.g.,
nodal line slope or dynamic line width analysis is likely to
fail for H2O, even for the uncoupled system.

FIG. 7. �Color� 2DIR correlation spectra of the OH stretching vibration in H2O for population times t2=0, 50, 100, 200, and 500 fs. Top panel: uncoupled
system, bottom panel: �=12 cm−1. Each spectrum is normalized to its maximum.

FIG. 8. �Color� 2DIR correlation spec-
tra of the OH stretching vibration in
H2O for population times t2=0, 50,
100, and 200 fs. Top panel: experi-
mental data �Ref. 26�, bottom panel:
�=12 cm−1 corrected for experimen-
tal pulse spectrum and ad hoc popula-
tion relaxation, see text. Each spec-
trum is normalized to its maximum.
Figure adapted from Ref. 28.

204110-9 Nonlinear response of vibrational excitons J. Chem. Phys. 130, 204110 �2009�



The intermolecular coupling on the other hand, mainly
affects the PA dynamics. Here, the fast transfer time scales
observed experimentally are reproduced for an average next
neighbor coupling as small as 12 cm−1. We find that the
large number of acceptor modes, as well as anharmonicities
and fluctuations in the system open up many intermolecular
transfer pathways, leading to a full decay of the PA on these
fast time scales, even for these small couplings. It is not
possible to estimate the coherence contributions to the en-
ergy transfer process from our simulations. No clear physical
model of energy transfer and dynamic delocalization for such
fluctuating disordered excitons has been developed to date.

Excitonic effects on the 2DIR correlation spectra are
rather subtle. The overall dynamics are almost unaffected by
the excitonic coupling. Rather than speeding up dynamics as
one might expect, the excitonic interactions smooth out the
fluctuations across the spectrum leading to a continuous dis-
tribution of spectral diffusion time scales from �100 fs on
the red side to �200 fs on the blue side of the spectrum.
These time scales are in close agreement with the experimen-
tal results.26

We show here that indeed a very high level of theory is
necessary to satisfactorily model the nonlinear vibrational
response of the OH stretching vibration of liquid H2O. Non-
Gaussian distributions and dynamics, non-Condon effects,
distributions of anharmonicities, and excitonic interactions
all significantly affect the signal, and therefore must be ac-
counted for. The NISE approach combined with our split
operator technique provides all this functionality at manage-
able computational cost, and in its generality is highly adapt-
able to any excitonic system.

IV. INTERFERENCE BETWEEN LIOUVILLE PATHWAYS
IN EXCITONIC SYSTEMS

In this section, we will address interference effects as
they appear in simulations of the nonlinear response of exci-
tonic systems, and how they affect the interpretation of the
signal. We note that these interferences are a purely theoret-
ical phenomenon but may affect the total signal through nu-
merical accuracy. This can be avoided by building in the
interferences from the outset using a quasiparticle represen-
tation and the nonlinear exciton equation.54

The third order response of a three band exciton model
has three Liouville pathways—GSB, ESE, and ESA—
contributing to the total response along a given phase match-
ing direction as shown in Fig. 1. For localized excitations
these pathways can be analyzed and interpreted separately,
i.e., the GSB pathway can be written such that it reproduces
the dynamics and spectral features of a bleached vibrational
ground state. For excitons this is not generally possible due
to subtle interferences between the different pathways. Only
the total signal as the sum of all pathways can be obtained.
We will describe and discuss this phenomenon below.

Let us consider a collection of N vibrational chro-
mophores, where the dipole moments are localized on each
chromophore. The Green’s function expressions Eq. �6� are

written in this local basis. For simplicity, we here apply the
Condon approximation ��m���
�� and will only look at the
rephasing GSB diagram S1:

S1�t1,t3� = − �4�
ijkl

�Gij
�1���3,�2��†Gkl

�1���1,�0� . �25�

In the absence of vibrational coupling between these
chromophores, i.e., localized excitations, G�1� is a diagonal
matrix, and Eq. �25� simplifies even more.

S1�t1,t3� = − �4��
i

Gii
�1���3,�2��†��

k

Gkk
�1���1,�0�� . �26�

Equation �26� can be interpreted as follows: if we think
of the third order response as the correlation of coherences at
different times, the two terms describe the coherences on
modes k and i during t1 and t3, respectively. However, in Eq.
�26� we not only sum over coherences of the same mode �i
=k� but also over coherences between different modes �i
�k�. For illustration, we recast Eq. �26�:

S1�t1,t3� = − �4�
i

�Gii
�1���3,�2��†�Gii

�1���1,�0��

− �4�
i�k

�Gii
�1���3,�2��†�Gkk

�1���1,�0�� . �27�

The first term resembles what is usually discussed as
GSB. It locally measures the correlations between coher-
ences during t1 and t3 and then performs an ensemble aver-
age ��i�. Double Fourier transforming this first term alone
produces a 2D spectrum with one peak on the diagonal and a
peak shape according to the spectral diffusion dynamics of
the system, as illustrated in Fig. 9�a�.

The second term of Eq. �27� on the other hand, measures
correlations between coherences of different modes i and k.
Even in the extreme case of a purely inhomogeneously
broadened system, the 2D spectrum of this contribution
alone would show a round shape �no stretching along the
diagonal�. An example is shown in Fig. 9�b�.

However, for localized excitations this second term does
not produce nonlinear signal. It can be shown straight for-
wardly that it is cancelled exactly with equivalent terms in S2

and S3. Thus, by only considering these diagonal contribu-
tions to the response the usual picture and interpretation of
the GSB, ESE, and ESA can be recovered.

For excitons, it is hard to extract the individual contri-
butions to the total response. We can write down and inter-

FIG. 9. �Color� Double Fourier transform of the first �a� and second �b�
terms of Eq. �27�. As an example, we used the t2=0 fs, �=12 cm−1 water
data shown in Fig. 7.
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pret the response similarly to Eq. �27�, but taking into ac-
count the vibrational couplings, resulting in nonzero off-
diagonal elements of the Green’s functions:

S1�t1,t3� = − �4�
ij

�Gij
�1���3,�2��†�Gij

�1���1,�0��

− �4 �
i�k,j�l

�Gij
�1���3,�2��†�Gkl

�1���1,�0�� . �28�

The first term of Eq. �28� still resembles a GSB-like
peak shape. The second term, however, does not cancel out
exactly with the other diagrams S2 and S3 as soon as V�0 or
��0, i.e., in the case of any anharmonicity in the system.
This effect occurs due to energy transfer in the S3 diagram
that essentially leads to redistribution of anharmonic effects.
The nonlinear signal contribution emerging from these off-
diagonal terms is neither GSB, ESE, nor ESA. It only
emerges as a subtle interference and incomplete cancellation
between the diagrams.

In general, these off-diagonal contributions scale as N4

since each dipole can act on a different chromophore. How-
ever, nonlinear signal is generated only when all four inter-
actions occur within the coherence size of the exciton. Oth-
erwise the contributions cancel due to destructive
interference between all pathways. This partial destructive
interference prevents a simple interpretation of the signal in
terms of the individual pathways.53

We note that, in general, the total signal will be signifi-
cantly weaker than the individual diagrams depending on the
ratio between the total system size and the coherence size of
the excitons. This interference reflects the fact that individual
pathways scale as N4 whereas the overall response only
scales as N2. It should be done carefully since it may affect
the numerical accuracy of simulations. The quasiparticle rep-
resentation and the nonlinear exciton equations build this
interference from the outset and avoid this difficulty.38,54

V. CONCLUSIONS

We presented a simulation formalism for calculations of
the nonlinear optical response of excitons based on numeri-
cal integration of the Schrödinger equation. This protocol is
highly versatile, enabling explicit treatment of nonadiabatic
exciton transport, fluctuations of the transition frequencies,
transition dipole moments, intermode couplings and the di-
agonal, and off-diagonal anharmonicities of all these quanti-
ties. The split operator technique greatly reduces computa-
tional cost, opening up a wide range of excitonic systems to
be treated. Even though we here fully developed the model
for vibrational excitons, it can be straight forwardly adapted
to treat electronic excitations, as well.

We used the method to simulate the third order response
of the OH stretching vibration in neat liquid water. An ab
initio electrostatic map for the OH stretching vibrations in
water is presented. The simulation results are in good agree-
ment with the experimental data. It is found that intramo-
lecular effects owing to the sensitivity of the two-
dimensional OH stretching potential are the major cause of
the dynamics observed. The experimental energy transfer

times are reproduced for surprisingly small intermolecular
couplings.
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APPENDIX A: FACTORIZATION OF THE HARMONIC
TWO-PARTICLE PROPAGATOR

In the following, we will consider the harmonic part of

the effective Hamiltonian denoted as Ĥ0���, i.e., the first two
terms of Eq. �2�:

Ĥ0��� = �
m

�m���B̂m
† B̂m + �

m��m

Jm,m����B̂m
† B̂m�. �A1�

The infinitesimal propagators for singly excited states
used in Eq. �9� are now denoted as U0

�1� written in the singly

excited local basis �m�= B̂m
† �0�:

U0,mn
�1� ��� = �m�Û0����n� = �m�exp�− iĤ0�������n� . �A2�

The doubly excited infinitesimal propagator U0
�2���� can be

calculated by factorization of U0
�1����. In the following, we

omit the explicit � dependence for clarity.

U0 mn,m�n�
�2� = �m,n�Û0�m�,n�� = �mn�m�n�U0,mm�

�1� U0,nn�
�1�

+ �2��mn�1 − �m�n��Umm�
�1� Umn�

�1�

+ �m�n��1 − �mn�Umm�
�1� Unm�

�1� � + �1 − �mn�

��1 − �m�n���Umm�
�1� Unn�

�1� + Unm�
�1� Umn�

�1� � , �A3�

where �m ,n�= �1 /�1+�mn�B̂m
† B̂n

†�0�. This rather complicated
structure of the two-particle propagator arises from the prop-
erties of the symmetrized two-particle basis. It can be shown
straight forwardly that any basis transformation matrix in a
symmetrized two-particle basis has the given structure.

APPENDIX B: AD HOC POPULATION RELAXATION
FOR VIBRATIONAL EXCITONS

The phenomenon described in Sec. IV has a direct im-
pact on ad hoc description of population relaxation for vibra-
tional excitons. Population relaxation is included by adding
relaxation factors � to Eq. �8�.

SI�t1,t2,t3� = ��
k=1

3

Sk�t1,t2,t3��k�t1,t2,t3�� ,

�B1�

SII�t1,t2,t3� = ��
k=4

6

Sk�t1,t2,t3��k�t1,t2,t3�� .

It is often assumed that the different levels of excitation
have different decay times,15,55 i.e., T1 for ground and ex-
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cited state populations �0��0� and �1��1�, T1 /2 for �0��1� co-
herences, and 3T1 /2 for �1��2� coherences, as shown in
Eq. �B2�.

�1,2,4,5�t1,t2,t3� = exp�− t1 − 2t2 − t3

2T1
� ,

�B2�

�3,6�t1,t2,t3� = exp�− t1 − 2t2 − 3t3

2T1
� .

No such procedure is possible when treating vibrational
excitons. If different ad hoc factors as shown in Eq. �B2� are
applied to the different diagrams, the proper cancellation be-
tween the diagrams is prevented and the resulting nonlinear
signal is physically wrong. Consequently, for excitons one
can only use one relaxation factor for all the diagrams, e.g.,

�1–6�t1,t2,t3� = exp�− t1 − 2t2 − t3

2T1
� . �B3�

This effect poses serious difficulties when trying to de-
scribe a persisting GSB as observed experimentally in the
case of H2O discussed in Sec. III C. Using a different T1 time
for the GSB diagrams S1 and S4 is not possible since this
would prevent proper cancellation of the off-diagonal ele-
ments of the response �second term in Eq. �28��, and thus
lead to wrong results.

We instead propose an approximate description for the
GSB, that is the first term in Eq. �28� only. This can be
expressed by rewriting the rephasing nonlinear response SI as
follows. We now again include intermolecular couplings and
fluctuations of the transition dipole moments.

SI = − �
ijkl

��i��3�Gij
�1���3,�2�� j��2��†��k��1�Gkl

�1�

���1,�0��l��0��exp�− t1 − t3

2T1
�exp� − t2

T1
ijkl�

+ �S2�t1,t2,t3� + S3�t1,t2,t3��exp�− t1 − 2t2 − t3

2T1
� ,

�B4�

where we choose T1
ijkl as

T1
ijkl = �T1,GSB for i = k and j = l

T1 otherwise.
� �B5�

The nonrephasing response SII is done equivalently.
Here, T1,GSB is the lifetime of the GSB and T1 is the excited

state population lifetime. Using Eqs. �B4� and �B5�, we can
now choose different times T1,GSB and T1 without preventing
the proper cancellation of the off-diagonal elements of the
response, i.e., we can describe a ground state bleach that
persists beyond the excited state population time T1, by using
a, respectively, larger value T1,GSB. For the data shown in
Fig. 8 we chose T1=200 fs and T1,GSB=
.

For illustration, we show the different contributions for
the t2=0 fs, �=12 cm−1 H2O data in Fig. 10. The GSB
contribution as discussed above is shown in �b�. At t2=0 fs,
the ESE is identical to the GSB. It is therefore possible at
this population time only, to fully dissect the response into
the different contributions. In Fig. 10�c� we show the result-
ing ESA contribution. From the amplitudes of the signals we
see that about 50% of the total amplitude is lost in the full
response due to cancellation between the peaks. Similarly,
the antidiagonal width of the peaks is significantly narrower
in the full response compared to the individual contributions,
greatly distorting simple analysis of the dynamics.
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